
Detecting and Fixing Precision-Specific Operations for
Measuring Floating-Point Errors∗

Ran Wang, Daming Zou, Xinrui He, Yingfei Xiong†, Lu Zhang, Gang Huang
Key Laboratory of High Confidence Software Technologies (Peking University), MoE

Institute of Software, EECS, Peking University, Beijing, 100871, China
{wangrancs,zoudm,hexinrui,xiongyf,zhanglucs,hg}@pku.edu.cn

ABSTRACT
The accuracy of the floating-point calculation is critical to
many applications and different methods have been proposed
around floating-point accuracies, such as detecting the errors
in the program, verifying the accuracy of the program, and
optimizing the program to produce more accurate results.
These approaches need a specification of the program to
understand the ideal calculation performed by the program,
which is usually approached by interpreting the program in
a precision-unspecific way.

However, many operations programmed in existing code
are inherently precision-specific, which cannot be easily inter-
preted in a precision-unspecific way. In fact, the semantics
used in existing approaches usually fail to interpret precision-
specific operations correctly.

In this paper, we present a systematic study on precision-
specific operations. First, we propose a detection approach
to detect precision-specific operations. Second, we propose a
fixing approach to enable the tuning of precisions under the
presence of precision-specific operations. Third, we studied
the precision-specific operations in the GNU C standard math
library based on our detection and fixing approaches. Our
results show that (1) a significant number of code fragments in
the standard C math library are precision-specific operations,
and some large inaccuracies reported in existing studies are
false positives or potential false positives due to precision-
specific operations; (2) our detection approach has high
precision and recall; (3) our fixing approach can lead to
overall more accurate result.

CCS Concepts
•Theory of computation → Program analysis;

∗This work is supported by the High-Tech Research
and Development Program of China under Grant
No.2015AA01A203, and the National Natural Science Foun-
dation of China under Grant No.61421091, 61225007,
61529201, 61432001.
†Corresponding author.

Keywords
Floating-point accuracy; precision-specific operations.

1. INTRODUCTION
A well-known problem in software development is the

inaccuracies from floating-point numbers. Since floating-
point numbers can represent only limited number of digits,
many real numbers cannot be accurately represented, leading
to inaccuracies in computation. In a critical software system,
inaccuracies from floating-point numbers may cause serious
problems. A well-cited example [4, 26] is that a Patriot
missile fails to intercept an incoming missile in the first
Persian Gulf War due to floating-point inaccuracies.

Given the importance of floating-point accuracy, many
research efforts have been devoted to the accuracy problem
of floating-point programs. These approaches detect whether
a program can produce a significantly inaccurate output [4,
8, 26, 2], verify whether all errors may be produced by a
program are within an upper bound [18, 12, 9], or optimize
the program so that the output is more accurate [10, 17]. A
key problem in implementing such an approach is to get the
ideal output for an execution of a program. In detection and
verification approaches, we need to know the ideal output so
that we can get the error of the actual output by comparing
it with the ideal output. In optimization approaches, we
need to know the ideal output so that we can change the
program to make the output close to the ideal output.

Typically, these approaches take a precision-unspecific
semantics to interpret the program to get the ideal out-
put. That is, floating-point variables are interpreted as real
numbers, and floating-point operations are interpreted as
real arithmetic operations. The outputs produced by the
precision-unspecific semantics are treated as the ideal out-
puts, and methods are used to approximate the ideal outputs
in an execution. One commonly-used technique is preci-
sion tuning1. That is, the computation interpreted by the
precision-unspecific semantics is executed in a high-precision
floating-point format, such as double, long double, or higher,
and the output is expected to be close enough to the ideal
output. For example, several detection approaches [4, 8, 26]
use a precision that is double of the original precision to get
an accurate output, and the accurate output is compared
with the original output to get the error on the original
output.

1In this paper, we use accuracy and precision differently.
Accuracy means how close the output is compared with the
ideal output. Precision means how many bits are used in
computing the output.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

FSE’16, November 13–18, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4218-6/16/11...

http://dx.doi.org/10.1145/2950290.2950355

Artifact evaluated by FSE✓

619

However, a program may contain precision-specific op-
erations, which would be difficult to be interpreted in a
precision-unspecific way. Precision-specific operations are
operations that are designed to work on a specific precision.
For example, let us consider the following program, which is
simplified from a code piece in exp function in GLIBC.

1: double round(double x) {
2: double n = 6755399441055744.0;
3: return (x + n) - n;
4: }

The goal of the program is to round x to an integer and
return the result. The constant n is a“magic number”working
only for double-precision floating-point numbers. When a
double-precision number is added with n, the decimal digits
of the sum are all rounded off due to the limited precision.
When we subtract n again, we get the result of rounding x

to an integer.
Since the operation is precision-specific, precision-unspecific

semantics used in existing approaches usually cannot correct-
ly interpret it. In the aforementioned semantics, the variables
x and n would be recognized as real numbers, and the whole
procedure would be interpreted as computing x+n−n, which
is mathematically equivalent to x. When existing approaches
follow such a semantics, they would produce undesirable
results. For example, previously we mentioned that most
detection techniques [4, 8, 26] rely on precision tuning to get
the error of the program. When we compute this program
in a higher-precision, e.g., all variables are long doubles, we
would not be able to get the rounding effect as long doubles
have enough digits to accommodate the decimal digits. As
a result, the higher precision would return x in most cases,
which is less accurate than the original program, and these
detection approaches would report an incorrect error when
they compare the outputs from the high-precision program
and the original program.

To fix this problem, a direct method is to extend the ex-
isting precision-unspecific semantics, so that such precision-
specific operations are correctly interpreted. For instance,
the above procedures should be interpreted as “rounding x

to integer” rather than “adding n to x and then subtracting
n away”. However, it is difficult to make such an extension.
First, it is difficult to capture all precision-specific opera-
tions. The example shows only one form of precision-specific
operation. There may be other types of precision-specific
operations, such as adding a different constant, subtracting
a constant, and perform bit operations. It is difficult to
enumerate all such forms. Second, even if we can enumerate
all such forms, it is difficult to interpret all operations in a
precision-unspecific way. We need to understand the inten-
tion of the operations and map it to real numbers. In the
example program, we need to understand its rounding be-
havior rather than interpreting it as adding a large constant.
Third, as can be seen from the example, the semantics is not
syntax-directed. We need to understand at least the value-
flow of the program to correctly interpret the program. This
makes the semantics difficult to define and to implement.

To deal with this problem, in this paper we propose a
lightweight approach to precision-specific operations. Partic-
ularly, we focus on detection approaches based on precision
tuning [4, 8, 26], aiming to reduce the false positives caused
by precision-specific operations. First, we propose a heuris-
tic to detect precision-specific operations. This heuristic is
based on the observation when a precision-specific operation

is incorrectly interpreted in precision-unspecific semantics,
executing the semantics in a high precision and in a low
precision usually produce large relative errors, except for
the variables storing errors. Second, we propose a fixing
approach to enable precision tuning under the presence of
precision-specific operations. The basic idea of the fixing ap-
proaches is, rather than trying to interpret precision-specific
operations in a precision-specific way, we always execute the
operations in the original precision. As our evaluation will
show later, the fixing approach leads to overall more accu-
rate output than both the original precision and the high
precision.

Based on our approach, we performed a systematic study
of precision-specific operations in the GNU C standard math
library, v2.19. We used our approach to detect precision-
specific operations in the library and to fix them for high-
precision execution. We also manually evaluated the reported
precision-specific operations and summarized them into pat-
terns. Our study leads to several findings: (1) a significant
number of code fragments in the standard C math library
are precision-specific operations, and some large inaccuracies
reported in existing studies [26, 2] are false positives or po-
tential false positives due to precision-specific operations; (2)
there are three main patterns of precision-specific operations,
namely rounding, multiplication, and bit operations; (3) our
detection approach has high precision and recall; (4) our
fixing approach can produce overall more accurate result
than both the original programs and programs with raised
precision, and the automatic fix has a close performance to
the manual fix.

The rest of the paper is organized as follows. Section 2
presents related work. Section 3 describes precision-specific
operations and discusses their effect on existing tools. Sec-
tion 4 demonstrates how to detect precision-specific opera-
tions under a certain precision-unspecific semantics. Section 5
describes how to fix precision-specific operations. Section 6
shows our experiment on analyzing precision-specific oper-
ations and evaluation of our detection and fixing approach.
Section 7 concludes the paper.

2. RELATED WORK

2.1 Inaccuracy Detection
Many approaches treat large inaccuracies as bugs and try

to identify such bugs from programs. One of the earliest
approaches is FPDebug [4], which estimates the error on
the result of an execution. FPDebug dynamically analyzes
the program by performing all floating-point computations
side by side in higher precision and produces two results, the
result in high-precision and that in low-precision. Then the
result in high precision is used as ground truth to calculate
the error.

Based on the approach of FPDebug, several detection
approaches [26, 8, 23] have been proposed. The goal of
a detection approach is to locate a test input that could
maximize the error on the output. The current approaches
all rely on search algorithms, where typical algorithms include
LSGA [26] and BGRT [8], while LSGA is reported to have a
better performance than BGRT [26].

An approach that works differently is the dynamic analysis
proposed by Bao and Zhang [2]. This approach is designed to
reduce the high overhead in FPDebug. Instead of executing
in high-precision, it relies on a heuristic to detect large errors:

620

if an operation whose operands are large on exponents, and
the result is small on exponents, the result probably contains
large errors. In this way, only slight overhead is introduced
to the original execution.

All these approaches interpret the program using similar
precision-unspecific semantics, which interprets floating-point
numbers as reals and floating-point operations as real op-
erations. As a result, these approaches could not correctly
interpret precision-specific operations, and may report large
errors that do not exist in the program.

Our detection approach could help identify the false large
errors reported by these approaches. Our fixing approaches
could still report an accurate result under the existence of
precision-specific computations, allowing these approaches to
continue to work. As our evaluation will show later, several i-
naccurate program reported in existing papers [26, 2] are false
positive or potentially false positive due to precision-specific
operations, and our fixing approach could help produce ac-
curate results on these programs.

2.2 Program Optimization
While increasing precision is commonly used for getting

more accurate results, reducing precision is commonly used
in program optimization to get faster code. Lam et al. [14],
Rubio-González [19], and Schkufza et al. [20] propose ap-
proaches that automatically reduce the precision of floating-
point computation to enhance performance with an accept-
able loss of precision. These approaches typically try to
locate, typically by search algorithms, variables in the pro-
gram, which have only limited effect on the accuracy of the
result when replaced by variables with lower precisions, and
replace these variables by lower-precision ones.

Since these approaches rely on precision-unspecific seman-
tics, they may incorrectly interpret precision-specific oper-
ations. When a variable is involved in a precision-specific
operation, the variable probably cannot be selected by these
approaches, as the change of its precision would lead to
significant change in the estimated accuracy of the result.
As a result, all such variables would never be selected for
optimization, potentially reducing the effectiveness of the
optimization. Our fixing approach could potentially be com-
bined with these approaches to enable the selection of these
variables: the variables will be computed as low-precision
in most of the time, and be computed in the original pre-
cision only during the precision-specific operations. In this
way, we can gain the performance boost without losing much
precision.

Another optimization direction is to increase the accuracy
of the computation. Darulova and Kuncak [10] propose an
approach that automatically increases precision to guarantee
the final result meets the accuracy requirement. Panchekha
et al. [17] propose an approach that searches the program
fragments that cause significant errors and rewrite them
into more accurate versions. However, these approaches still
use precision-unspecific semantics, and thus may rewrite
precision-specific operations into an undesirable direction.
By combining this approach with our detection approach,
such cases could potentially be avoided.

2.3 Verification
A lot of efforts are put into verification techniques, trying

to verify whether the error produced by a program is always
within a threshold. Typical approaches [18, 12, 9] combine

dataflow analysis with interval [13] or affine arithmetic [21]
to get the upper bound of the errors. However, these ap-
proaches also rely on precision-unspecific semantics, thus may
erroneously interpret precision-specific operations and report
imprecise or unsound upper bound. Our approach could po-
tentially be combined with these approaches to provide more
informed result: the precision-specific computations could
also be reported to the users to help the users determine
where the upper bounds may be imprecise or unsound.

Besides full automatic verification, several approaches have
been proposed to facilitate manual verification for floating-
point programs. Boldo et al. [5, 6] build support for floating-
point C programs in Coq, allowing one to easily build proofs
for floating-point C program. Ayad and Marché [1] propose
the use of multiple provers to try to automate the proofs
of floating-point properties. Whether these approaches are
affected by precision-specific operations depends on how the
verified properties are specified. If a property is inferred
from the program, these approaches may also be affected
because the precision-specific operations may be erroneously
interpreted.

2.4 External Errors
So far we only discuss internal errors, which is about how

much inaccuracy may be introduced during the execution of
the program. Some approaches concern about external errors,
which is about the stability of the program: how much the
errors already carried on the input will be magnified during
the computation of the program. Recent work includes static
verification of robustness by Chaudhuri et al. [7], dynamic
analysis by Tang et al. [22], and dynamic sampling by Bao et
al. [3]. These approaches are not affected by precision-specific
operations.

3. OVERVIEW
In this section, we demonstrate how the correctness of

FPDebug [4], an existing approach we concerned particularly,
is affected by precision-specific operations.

3.1 Semantics of FPDebug
Here we informally describe the precision-unspecific se-

mantics of FPDebug. As introduced in Section 2, FPDebug
is a dynamic analysis approach based on precision tuning
for detecting the error and canceled bits produced in one
execution of the program. Other detection approaches are
either directly built upon FPDebug [26] or are designed to
behave similarly to FPDebug [2, 8].

FPDebug implements precision tuning by instrumenting
the binary code. For each address that can be possibly
accessed as a floating-point variable in the program, either on
stack or on heap, a shadow variable is created for the address.
The precision of the shadow variable can be specified by a
parameter, which is 120-bit by default. Whenever a floating-
point operation vo = �v1 or vo = v1 ◦ v2 is performed, where
� denotes an unary operator and ◦ denotes a binary operator,
the system first checks whether the shadow variables of
v1 and v2 are initialized, and if so, the same operation is
performed in high precision, where the result is stored in
the shadow variable of vo. If the shadow variable of v1 or
v2 is not initialized, the value of the corresponding variable
is converted into the high precision to initialize the shadow
variable. When the program ends, the difference between

621

the shadow variable of the output and the original output is
taken as the error of the program.

A dedicated point is that the difference between the shadow
variables and the original variables may cause a conditional
statement to take a different branch. To enable side-by-side
comparison of each statement, FPDebug always takes the
branch that is chosen in the original precision.

As we can see, the semantics FPDebug uses to interpret
floating-point operations are precision-unspecific. The op-
erations are interpreted as operations on real numbers and
thus can be adapted to a different precision. Similarly, the
floating-point numbers are interpreted as reals such that can
be adapted to a different precision.

3.2 FPDebug on Precision-Specific Operations
Now we use two examples to show how FPDebug shall

report false errors on precision-specific operations. The first
example is the example program we have shown in Section 1.
As explained in Section 1, the purpose of the program is to
round x to an integer. However, when executed in FPDebug,
two shadow variables would be created for x and n, respec-
tively, and a high-precision computation for x+n-n would be
performed. Since the high-precision variables can represent
a much more precise scope than the original precision, the
high-precision computation would produce a result that is
closer to the original x for most inputs. On the other hand,
the low-precision would produce the accurate result of round-
ing x to an integer for most inputs. As a result, false errors
would be produced when x is not an integer.

In the second example, let us consider the following pro-
gram, which is also a typical example of precision-specific
operations and is reduced from log function in GLIBC.

1: union Double2Int {
2: int i[2];
3: double d;
4: };
5:
6: double test(Double2Int x) {
7: x.d = calc();
8: x.i[HIGH_HALF] = (x.i[HIGH_HALF] & 0xFFFFF) | 0x40000000;
9: return x.d;
10: }

The purpose of the code is to get µ, such that

µ · 2n = |x.d|, µ ∈ [2, 4)

x is the input of function test, and µ is the output. The
union type Double2Int allows us to manipulate different
bits of a double variable directly: x.i[LOW_HALF] repre-
sents the lower half of x.d, x.i[HIGH_HALF] represents the
higher half of x.d, and bit operators can be directly ap-
plied to x.i[LOW_HALF] and x.i[HIGH_HALF]. The values of
HIGH_HALF and LOW_HALF depend on the infrastructure of the
machine. The 0xFFFFF extracts the significand of double,
while 0x40000000 sets the exponent to 1 and the sign bit to
0. This operation is obviously precision-specific and is not
easy to map to other precisions: we need the knowledge of
floating-point format to properly map the constants to other
precisions.

When executing this program in FPDebug, FPDebug
would create a shadow variable for x.d. However, the op-
eration at line 8 is not a floating-point operation, so the
high-precision computation on shadow variables would not
be performed. As a result, when the function returns, the
original value is changed by line 8 but the shadow value is

not changed, leading to a false error reported by FPDebug.
In other words, the operation at line 8 is precision-specific,
and when FPDebug maps the operation to high-precision,
it erroneously maps this operation to an empty operation
which does nothing.

Note that one may argue that the problem of this example
is a bug in FPDebug implementation: the implementation
does not recognize the alias relation between x.d and x.i.
However, although we know the shadow value of x.d should
be changed, we do not know how to change it as the change
operation is specific to the original precision. For exam-
ple, we need to construct constants to replace 0xFFFFF and
0x40000000 in other precision.

4. DETECTING PRECISION-SPECIFIC OP-
ERATIONS

4.1 Precision Tuning
To describe the detection approach, let us first define

precision tuning. Our definition is independent of any par-
ticular precision-unspecific semantics, so that our approach
can be integrated into different detection tools with different
semantics. We assume an instruction set L containing all
instructions that can be written in a program. Each instruc-
tion l takes the form vo = f(vi1 , . . . , vin), vo is known as the
output variable, denoted by out(l), the set {vi1 , . . . , vin} is
known as the input variables, denoted by in(l), and f is a
function computing the output from the input. We do not
consider jump instructions because we follow the side-by-side
execution in FPDebug, where the high-precision program
is always executed on the same path as the low-precision
program. A precision tuning function, φ : L→ L, takes an
instruction as input and produces an instruction in the high
precision as output, where for any l ∈ L, in(l) = in(φ(l))
and out(l) = out(φ(l)).

For example, in the first example program in Section 1,
line 3 becomes two instructions at the binary level: tmp=x+n

and ret=tmp-n. The output variable of tmp=x+n is tmp, while
the input variables are x and n. The precision tuning func-
tion of FPDebug maps these two instructions to the same
operations in the high precision. In the second example
program in Section 3.2, line 8 also becomes two instructions.
Since FPDebug fails to correctly capture the two instruction-
s, we consider FPDebug maps the two instruction to void
instructions, which do nothing.

Next, we describe how to estimate the error on a variable
by comparing values from the original and the high-precision
executions. We adopt the same side-by-side execution model
as FPDebug: the high-precision execution always follows the
same path as the original execution. Let l be an instruction
in a program, vo be the value of out(l) after the execution of
l in the original execution, and vh be the value of out(l) after
the execution of φ(l) in the high-precision execution. The
estimated relative error, or shortly error, of output variable

out(l) at l is
∣∣∣ vh−vo

vh

∣∣∣. Similarly, let x ∈ in(l) be an input

variable of l, vo be the value of x before the execution of
l in the original execution, and vh be the value of l before
the execution of φ(l) in the high-precision execution. The

estimated relative error of input variable x at l is
∣∣∣ vh−vo

vh

∣∣∣.
For example, in the aforementioned two instructions, the

error of output variable tmp at tmp=x+n is calculated by

622

comparing the values of tmp in the two executions after
executing the instruction, while the error of the input variable
x is calculated by comparing the values of x in the two
executions before executing the instruction.

4.2 The Heuristics

4.2.1 Possibly Precision-Specific Operations
Given two thresholds E and P , we detect precision-specific

operations based on a heuristic. The basic heuristic is as
follows, which is based on executing the program on a large
number of input values.

Definition 1. Let l be an instruction, ei be the maximum
error among the input variables of l at l in an execution,
and eo be the error of the output variable at l in the same
execution. We say l is possibly precision-specific if eo/ei > E
on at least P% of the executions.

In other words, if the error inflates significantly after an
operation for many inputs, we consider the operation possibly
precision-specific.

We explain the intuition of the heuristic from two aspects.
First, precision-specific operations usually meet this
criterion. Recall our goal is to reduce the false errors caused
by precision-specific operations. If a detection approach
reports a false error due to a precision-specific operation,
the precision-specific operation must have been interpreted
incorrectly by the precision-unspecific semantics. As shown
by our examples, when the precision-specific operation is
incorrectly interpreted, the high-precision program is usually
largely different from the original program, and thus will
cause a significant inflation of the error.

For example, in the first example program in Section 1, the
operation “rounding to integer” is interpreted as an identity
transformation. As a result, the original program rounds
x to an integer, while the high-precision program directly
returns x. Unless x is a very large number or x is exactly an
integer, a significant relative error will be reported. In the
second example program in Section 3, the first instruction
at line 8,

tmp=x.i[HIGH_HALF]&0xFFFFF,

is interpreted as a void operation. As a result, tmp is assigned
in the original program but remains a random uninitialized
value in the high-precision program, which leads to large
errors in most cases.

Second, normal operations seldom meet the crite-
rion. As analyzed in many existing papers [4, 2], there are
two possibilities of large errors in normal operations: ac-
cumulation and cancellation. Accumulation indicated that
errors propagate through a sequence of operations and are
accumulated on variables in those operations. Though the
error from each operation is small, the accumulated error
can be large. Cancellation indicates that the subtraction of
two close numbers, where many significant digits will be sub-
tracted off, may cause large errors. Obviously, accumulation
cannot occur in one operation, and thus the only possibility
to cause large error inflation by one operation is cancellation.

However, when a cancellation causes large errors, the input
variables need to be close to each other and at least one of
the operands contains rounding errors. Among the whole
input space, such input pairs only consist of a small portion.
Therefore, an operation that is not precision-specific would
probably not cause cancellation on many inputs.

4.2.2 Probably Precision-Specific Operations
While the heuristic works for most of the time, it would

incorrectly identify a normal case as precision-specific: the
calculation of errors. Many algorithms that aim to produce an
accurate result use an extra variable to store the error. Given
an operation z = f(x, y), the floating-point computation
result z′ is usually different from the ideal result z due to
the rounding errors. To make the final result more accurate,
a typical accurate algorithm uses an additional operation
g to get the error ez on z′, where ez = g(x, y, z′). Though
we cannot store the accurate value of z as a floating-point
number, we can usually store the error ez accurately as a
floating-point number. So this error is stored as a separate
floating-point number and will be used to correct the final
result or estimate the error of the final result later. For
example, Dekker proposes an algorithm [11] to get the error
(called correction term) in the addition operation. Suppose
we are going to calculate z = x + y. The error can be
calculated as ez = x− (x+y)+y in floating-point operations.
This kind of correction is widely used in real world programs
such as the C standard math library.

However, given an operation and its high-precision form,
the errors produced by the two operations are usually largely
different. The estimated error on the output is likely to be
much larger than the errors on the input. As a result, if
we rely on Definition 1, we may incorrectly identify such
operations as precision-specific operations.

To overcome this problem, we further introduce a negative
condition to filter out these false detections. When a variable
is used to store errors, the errors are usually very close to
zero, and we can use this feature to filter out these false
detections. Given three thresholds Vo, Vh, and Q, we have
the following definition.

Definition 2. A possibly precision-specific instruction l is
probably precision-specific if on at least Q% of the executions,
the output value of the instruction is smaller than Vo at the
original precision and smaller than Vh at the high precision.

4.3 Detection Algorithm
Based on the heuristic, it is easy to derive our detection

algorithm to detect precision-specific operations. The algo-
rithm consists of the following steps.

• Sampling. We first sample a large number of input
values to execute the program. We sample the space
of each parameter within a fixed interval. The purpose
of sampling within a fixed interval rather than random
sampling is to evenly cover the input space.

• Execution. We execute the program with the input
values. The high-precision program is executed side-
by-side with the original program. At the execution of
each floating-point operation, we record the estimated
relative errors of the input and the output variables.

• Data Filtering. We calculate the error inflation by each
instruction execution l in an execution, and once we
identified an inflation larger than E, we filter out all
data collected from the rest of this execution. This is
because l may be a precision-specific operation, and
thus the later operations may be affected by the error
propagated from that operations. The relative errors of
later operations may be much different from a normal
execution.

623

• Detection. We analyze the recorded data and deter-
mine the probably precision-specific operations based
on Definition 2. Note that since we filter out all in-
struction executions after a large error inflation, we
may only detect the precision-specific operations that
are executed early on the sampled inputs.

• Fixing and Repeating. We use the method introduced
in the next section to fix the precision-specific opera-
tions and restart the process to detect more precision-
specific operation.

5. FIXING PRECISION TUNING
In this section, we describe how to fix precision tuning

for precision-specific operations. Our idea is to reduce the
precision of the variables right before the precision-specific
operation, and raise the precision right after the precision-
specific operation. In this way, the precision-specific opera-
tion is still performed in the original precision, while most
operations are performed in the high-precision, so the overall
result would be more precise than both the original precision
and the high precision without the fix.

Please note that a precision-specific operation may be de-
tected by our approach at one instruction, but the operation
itself may not contain only this instruction. In out first ex-
ample, the operation contains two instructions: tmp=x+n and
ret=tmp-n, but our detection approach would report only at
the latter instruction.

To mark the boundaries of the operations, we introduce two
fixing statements, ps_begin(v1,. . .,vn) and ps_end (v1,
. . . , vn). The programmers could use the two statements to
precisely mark the boundary of a precision-specific operation.
The variables v1,. . .,vn are variables that would be used
in the precision-specific operation, whose precision will be
reduced at ps_begin and be resumed at ps_end.

It is also desirable to make the insertion of the fixing
statements automatically. We note that, for many precision-
specific operations, reducing the precision at the correct
boundaries is the same as reducing the precision at the last
instruction. For example, in the first example, if we perform
tmp=x+n in the high precision and reduce the precision of
tmp after the statement, the decimal part of x+tmp will still
be rounded off. Since our detection approach can correctly
detect the last instruction in a precision-specific operation,
automatically inserting ps_begin and ps_end around the
detected instruction would also produce the desirable result in
many cases. Therefore, we also implement an approach that
automatically inserts the two statements. As will be shown
later in the evaluation, with a proper E in the detection
approach, the automatic fix can achieve a close performance
to the manually inserted ones.

6. EVALUATION
Our experiments are designed to answer the following

research questions.

• (RQ1) How many precision-specific operations are de-
tected and what are the main patterns?

• (RQ2) How precise and complete is our detection ap-
proach?

• (RQ3) How different are possibly and probably precision-
specific operations?

• (RQ4) How effective is our fixing approach?

• (RQ5) Are the errors reported in existing studies af-
fected by precision-specific operation?

6.1 Implementation
We have implemented our approach by modifying the F-

PDebug code. Basically, we reused the same instrumentation
mechanism of FPDebug to implement the precision tuning
and added additional statements for fixing precision tuning,
which include manipulations of different precision values.
We also instrumented code to track the non-floating-point
operation of a union at the high precision, which was not
tracked by FPDebug.

To precisely analyze our results, we used MPFR, a C library
for multiple-precision floating-point computations with cor-
rect rounding. In this way, we can ensure the relative errors
are accurately calculated without significant floating-point
errors. Note that FPDebug also uses MPFR for precision
tuning and relative error calculation.

Our implementation and all experimental data are available
at the project web site 2.

6.2 Experimental Setup

6.2.1 Subjects
We evaluated our approaches on the functions of the scien-

tific mathematical library of the GNU C Library (GLIBC),
version 2.19. Most math functions in the GNU C Library
contain three versions for float, double, and long double. A
version for a particular precision takes input values at that
precision, performs the calculation at that precision, and
produces the result at that precision in most cases. Since
many implementations for different versions are similar, we
take only the double version, which includes 48 functions.
The subjects cover calculation such as trigonometric func-
tions, inverse trigonometric functions, hyperbolic functions,
logarithmic functions, exponentiation functions, etc. Each
function takes 1-3 double-precision floating-point or integer
input parameters and produces a double-precision floating-
point or integer output3. A more detailed description of the
subjects is available on the project web site.

6.2.2 Oracles
To understand the performance of our fixing approach, we

need to know the ideal output values of the functions at a giv-
en input. To get such ideal output values, we re-implemented
the subject functions using a calculator with controlled er-
ror [25][24]. With a specified accuracy requirement, e.g., the
digits should be accurate at least for two decimal places, the
calculator guarantees that the result meets the accuracy, by
dynamically raising the precision when necessary.

Since different operations require different calculation meth-
ods and some are yet unknown, the calculator supports only
a limited set of operations. Using these operations, we im-
plemented in total 21 GLIBC mathematical functions, which
are listed in Table 1. The second column shows how we
encode the function using the operations provided by the
calculator. As we can see from the table, the 21 functions
are the most commonly used math functions of GLIBC.
2https://github.com/floatfeather/PSO
3Function s_fmaf takes float as input and output, but the
computation is done with double, so we still include it in our
subjects

624

Table 1: Formulas for scientific functions in GLIBC.
Function Formula
acos arccos(a)

acosh ln(a + (a2 − 1)
1
2)

asin arcsin(a)

asinh ln(a + (a2 + 1)
1
2)

atan arctan(a)
atan2 arctan(a

c
)

atanh 1
2
× ln(

(1+a)
(1−a)

)

cos cos(a)

cosh (ea+e−a)
2

exp ea

exp2 2a

exp10 10a

log ln(a)

log2 ln(a)
ln(2)

log10 log(a)
log1p ln(a + 1)
pow ac

sin sin(a)

sinh (ea−e−a)
2

tan tan(a)

tanh (ea−e−a)

(ea+e−a)

6.2.3 Parameters
We need to set the thresholds in our detection approach,

E, P%, Vo, Vh and Q%. To set the thresholds, we perform a
preliminary study on function exp. The result suggests that
changing E has some effects on the result while changing
the other thresholds have little effect. As a result, we set
five values to E: 104, 106, 107, 108 and 1010. For the other
thresholds, we set them with fixed values: P% with 70%, Vo

with 10−9, Vh with 10−15, and Q% with 10%.
We also need to set the accuracy requirement of the cal-

culator with controlled error. We require the result to be
accurate for at least 400 decimal places, which are guaranteed
to cover the dynamic range of double-precision floating-point
numbers.

We also need to set the interval for sampling the input
space. Since each function has a different input space, we
determine the interval based on the size of the input space,
where each function is sampled 1000 to 5000 times.

6.2.4 Procedures
We ran our tool to detect precision-specific operations on

all subjects. Note that in the detection approach we need to
fix all detected operation to discover more operations. We
used the automatic fix in the detection process. So, in the
end, we already have all operations discovered and fixed. We
repeated the process five times setting the threshold E with
five different values.

Next, we reviewed all precision-specific operations discov-
ered in all experiments and determined the false positives.
Then we manually inserted fixing statements for all true
positives and ran the fixed functions again for all inputs to
get the result of the manual fix.

Finally, we review the inaccuracies reported by two existing
papers [26, 2], and check whether the result may be affected
by the precision-specific operations we detected.

Our detection approach used 9819s to analyze all 48 func-
tions, in average 205s for one function.

Table 2: Precision-specific operations per function
Function Number Function Number Function Number

acos 1 acosh 1 asin 3
asinh 1 atan 2 atan2 4
cos 11 cosh 2 erf 2
erfc 2 exp10 2 exp2 1
exp 2 gamma 1 j0 17
j1 17 lgamma 1 log 1
pow 7 sin 15 sincos 22
sinh 2 tan 2 y0 17
y1 17

Table 3: Precision-specific operations per files
Function Number Function Number
e asin.c 3 e atan2.c 4
e exp2.c 1 e exp.c 4
e pow.c 5 e log.c 1
s atan.c 2 s sin.c 24
s tan.c 2 dosincos.c 2

6.3 Results

6.3.1 RQ1: How many precision-specific operations
are detected and what are the main patterns?

In the 48 tested functions, there are 25 functions detected
to contain precision-specific operations. The functions are
listed in Table 2, where the number column shows the num-
ber of precision-specific operations detected when testing
the function. In total, 153 precision-specific operations are
detected. Note that different functions may call the same
internal functions, so there are duplicated operations among
different functions. After excluding duplicated operations,
we have 48 unique probably precision-specific operations,
which spread over 10 files as shown in Table 3.

This result indicates that precision-specific operations are
widely-spread in the C standard math library. Note that
functions in the C standard math library are basic build-
ing blocks of other applications performing floating-point
computation, so any applications calling these functions are
affected by precision-specific operations.

We also take a look at C math library functions with the
two different precisions, float and long double. We found that,
when the implementation algorithms for different versions
are similar, similar precision-specific operations can also be
found in the other versions.

By manually reviewing all probably precision-specific op-
erations, we identify three main patterns, namely, rounding,
multiplication, and bit operation.

Rounding. The rounding pattern takes the form of x =
(x+ n)− n, where x is a variable and n is a constant. We
have already seen an example of the rounding pattern in the
example in Section 1. When applying the pattern, different
n can be used to round x to different levels. Generally,
the larger the n is, the more bits are shifted off. A list of
constants we found in the C math library is listed in Table 4.

Multiplication. The multiplication pattern takes the fol-
lowing form, where n is a constant and a is a variable.

t = n ∗ a
a1 = t− (t− a)

a2 = a− a1

625

Table 4: Values of constants.
Constant name Value Type
big 1.5 × 245 Rounding
big 1.5 × 236 Rounding
bigu 1.5 × 242 − 724 × 2−10 Rounding
bigv 1.5 × 235 − 1 + 362 × 219 Rounding
THREEp42 1.5 × 241 Rounding
three33 1.5 × 234 Rounding
three51 1.5 × 252 Rounding
toint 1.5 × 252 Rounding
TWO52 252 Rounding
t22 1.5 × 222 Rounding
t24 224 Rounding
CN 227 + 1 Multiplication

Table 5: Detecting probably precision-specific oper-
ations (without duplicate).
Threshold E 104 106 107 108 1010

Rounding 44 44 43 42 39
Multiplication 2 2 2 1 0
Bit operation 2 2 2 2 2
False positive 30 16 14 9 7
Total 78 64 61 54 48
Precision 61.54% 75.00% 77.05% 83.33% 85.41%
Recall 100% 100% 97.92% 93.75% 85.42%

This block of code splits a into two components a1 and a2
using the constant n. Later, the two components can be used
to calculate an accurate multiplication of a using an existing
algorithm [11, 16].

This operation is precision-specific because n needs to
be determined based on the precision of a. The value of
n for double precision is also listed in Table 4, which is
identified from the detected precision-specific operations in
our experiments.

Bit Operation. The bit operation pattern treats a floating-
point number as an integer and apply bit operators to the
integer. We have seen an example of bit operation in the
example program in Section 3.2. Since the manipulation of
bits is related to the format of the specific precision, the
operations are naturally precision-specific.

The identification of the three patterns from the 48 opera-
tions show that there may be a limited number of patterns
for precision-specific operations, showing the hope of improv-
ing the precision-unspecific semantics to handle these cases.
However, the three patterns are identified only from the C
math library, and we do not know how complete the pattern
set is. Furthermore, we also do not see easy ways to interpret
these patterns precision-unspecifically.

6.3.2 RQ2: How precise and complete is our detec-
tion approach?

The result of the detected probably precision-specific op-
erations is shown in Table 5. We show the numbers of each
pattern, false positives, the total numbers, and the precisions
for each threshold E without duplicates.

We make the following observations from the table.

• Our approach has an overall high precision. At the
threshold 1010, our approach has a precision of 85.41%.
A possible reason for the false positives, as we suspect,
is the insufficient sampling at some instructions. There
are instructions at which only a few inputs can reach,

Table 6: Detecting possibly precision-specific opera-
tions (without duplicate).
Threshold E 104 106 107 108 1010

Rounding 44 44 43 42 39
Multiplication 2 2 2 1 0
Bit operation 2 2 2 2 2
False positive 94 82 82 76 72
Total 142 130 129 121 113
Precision 33.80% 36.92% 36.43% 37.19% 36.28%
Recall 100% 100% 97.92% 93.75% 85.42%

and we have to determine whether they are precision-
specific based on the few executions, which are not
statistically significant.

• Our approach has an overall high recall. At the thresh-
olds 104 and 106, our approach achieves a recall of
100%.

• The threshold E has a significant effect on the preci-
sion and recall. The higher the threshold, the higher
the precision, but lower the recall. Threshold 106 is
superior to 104 in both recall and precision, and no
other threshold can be completely superior to another
threshold on both precision and recall.

Note that when calculating the recall, we treat the detected
precision-specific operations on all threshold as the complete
set. Theoretically, there can be precision-specific operations
that are not detected at any threshold in our approach. How-
ever, as will be shown later in Table 7, our approach achieved
very small relative errors compared to the oracles after we
fixed all identified precision-specific operations, so it is likely
that we have identified all precision-specific operations that
cause large false errors.

6.3.3 RQ3: How different are possibly and probably
precision-specific operations?

This question concerns about the usefulness of the negative
condition we used to determine probably precision-specific
operations. Table 6 shows the result of detecting possibly
precision-specific operations, which does not use the nega-
tive condition to filter the operations calculating errors. By
comparing Table 5 and Table 6, we can see that (1) the
negative condition is very effective in filtering out false pos-
itives, where the precision has an increase up to 49%, (2)
the negative condition did not filter out any true positives,
as the recalls between the two tables are the same for all
thresholds. The result indicates the negative condition is
effective in improving the performance of our approach.

6.3.4 RQ4: How effective is our fixing approach?
Table 7 shows the average relative errors of each function

after fixing precision tuning for the detected precision-specific
operations. Here we show the result of both automatic fix
and manual fix, where the automatic fix is performed based
on the detection at four E thresholds: 106, 107, 108, 1010.
We do not include 104 because it is inferior to 106 on both
precision and recall.

Note that there are three factors that affect the precision
of the automatic fix. (1) Precision: the lower the precision,
the more false positives are identified, leading to more in-
structions unnecessarily executed in low precision. (2) Recall:
when we missed a precision-specific operation, failing to fix

626

Table 7: Average relative error to standard value. Functions with ∗ have precision-specific operations. OP: original precision.

HP: high precision. FOD: fix only the detected instruction on true positives.
Subject Automatic Fixing Manual FOD OP HP

E = 106 E = 107 E = 108 E = 1010 – – – –
acos∗ 1.6106E − 19 1.6106E − 19 5.8999E − 11 9.7265E − 20 9.7265E − 20 9.7265E − 20 4.1048E − 17 9.7265E − 20
acosh∗ 1.0333E − 17 1.0333E − 17 1.0333E − 17 1.0333E − 17 1.0329E − 17 1.0333E − 17 4.3585E − 17 5.5122E + 04
asin∗ 2.0898E − 19 2.0898E − 19 2.0898E − 19 2.0898E − 19 2.0898E − 19 2.0898E − 19 3.9899E − 17 2.0898E − 19
asinh∗ 1.3004E − 17 1.3004E − 17 1.3004E − 17 1.3004E − 17 1.3000E − 17 1.3004E − 17 4.3561E − 17 7.5351E + 03
atan2∗ 1.3947E − 18 1.3947E − 18 1.3947E − 18 1.3947E − 18 1.3947E − 18 1.3947E − 18 4.0843E − 17 1.3947E − 18
atan∗ 4.0231E − 19 4.0231E − 19 4.0231E − 19 4.0231E − 19 4.0231E − 19 4.0231E − 19 3.5873E − 17 4.0231E − 19
atanh 3.3868E − 17 3.3868E − 17 3.3868E − 17 3.3868E − 17 3.3868E − 17 3.3868E − 17 4.9363E − 17 3.3868E − 17
cos∗ 6.0255E − 19 2.3145E − 21 2.3145E − 21 2.3145E − 21 2.3145E − 21 2.3145E − 21 3.7273E − 17 2.5843E − 03
cosh∗ 4.2901E − 22 4.2901E − 22 4.2901E − 22 4.2901E − 22 4.2901E − 22 4.2901E − 22 4.4157E − 17 9.5417E − 07
exp10∗ 8.4842E − 23 8.4842E − 23 8.4842E − 23 8.4842E − 23 8.4842E − 23 8.4842E − 23 6.9779E − 17 1.2630E − 06
exp2∗ 6.0300E − 20 6.0300E − 20 6.0300E − 20 6.0300E − 20 6.0300E − 20 6.0300E − 20 4.1163E − 17 3.2491E − 04
exp∗ 1.9083E − 25 1.9083E − 25 1.9083E − 25 1.9083E − 25 1.9083E − 25 1.9083E − 25 4.1266E − 17 9.5402E − 07
log10 8.1172E − 18 8.1172E − 18 8.1172E − 18 8.1172E − 18 8.1172E − 18 8.1172E − 18 4.2657E − 17 8.1172E − 18
log1p 1.2697E − 17 1.2697E − 17 1.2697E − 17 1.2697E − 17 1.2697E − 17 1.2697E − 17 4.2729E − 17 1.2697E − 17
log2 6.3510E − 18 6.3510E − 18 6.3510E − 18 6.3510E − 18 6.3510E − 18 6.3510E − 18 4.3646E − 17 6.3510E − 18
log∗ 8.6195E − 21 8.6195E − 21 8.6195E − 21 8.6195E − 21 8.6195E − 21 8.6195E − 21 4.0822E − 17 1.0916E + 01
pow∗ 2.5147E − 16 2.5147E − 16 1.6663E − 08 1.6663E − 08 5.5188E − 24 5.5188E − 24 3.7539E − 17 8.8444E − 07
sin∗ 7.7354E − 21 7.7354E − 21 7.7354E − 21 7.7354E − 21 7.7354E − 21 7.7354E − 21 3.5656E − 17 4.2733E − 02
sinh∗ 1.7909E − 17 1.7909E − 17 1.7672E − 17 1.7672E − 17 1.7672E − 17 1.7672E − 17 4.6532E − 17 5.3316E − 07
tan∗ 1.7135E − 17 1.7135E − 17 1.7135E − 17 1.7135E − 17 1.7135E − 17 1.7135E − 17 3.8932E − 17 1.4335E + 13
tanh 2.5412E − 19 2.5412E − 19 1.6890E − 19 1.6890E − 19 1.6890E − 19 1.6890E − 19 5.9692E − 18 1.6890E − 19

Table 8: Sign test for E = 107 and manual fixing. Functions with ∗ have precision-specific operations. N: how many times the

function is executed. O: original precision. H: high precision. >O(>H): the number of executions that are more accurate than the original

precision (high precision).

E = 107 Manual
Function N > O < O p-value > H < H p-value > O < O p-value > H < H p-value
acos∗ 1000 999 0 1.87E − 301 17 15 4.30E − 01 999 0 1.87E − 301 2 0 –
acosh∗ 1001 869 131 2.63E − 135 991 0 4.78E − 299 869 131 2.63E − 135 991 0 4.78E − 299
asin∗ 1000 994 4 1.54E − 290 18 13 2.37E − 01 994 4 1.54E − 290 18 13 2.37E − 01
asinh∗ 1000 836 163 8.19E − 110 959 0 2.05E − 289 836 163 8.19E − 110 959 0 2.05E − 289
atan2∗ 3600 3518 82 0.00E + 00 0 0 – 3518 82 0.00E + 00 0 0 –
atan∗ 1000 994 5 1.54E − 288 0 0 – 994 5 1.54E − 288 0 0 –
atanh 1997 1380 616 2.46E − 67 0 0 – 1380 616 2.46E − 67 0 0 –
cos∗ 1257 1257 0 0.00E + 00 1156 0 0.00E + 00 1257 0 0.00E + 00 1156 0 0
cosh∗ 1001 1001 0 4.67E − 302 1001 0 4.67E − 302 1001 0 4.67E − 302 1001 0 4.67E − 302
exp10∗ 1000 1000 0 9.33E − 302 1000 0 9.33E − 302 1000 0 9.33E − 302 1000 0 9.33E − 302
exp2∗ 1000 999 0 1.87E − 301 999 0 1.87E − 301 999 0 1.87E − 301 999 0 1.87E − 301
exp∗ 1000 1000 0 9.33E − 302 1000 0 9.33E − 302 1000 0 9.33E − 302 1000 0 9.33E − 302
log10 1000 889 111 1.06E − 151 0 0 – 889 111 1.06E − 151 0 0 –
log1p 1000 862 138 7.91E − 129 0 0 – 862 138 7.91E − 129 0 0 –
log2 1000 949 51 1.74E − 215 0 0 – 949 51 1.74E − 215 0 0 –
log∗ 4999 4998 1 0.00E + 00 4484 0 0.00E + 00 4998 1 0.00E + 00 4484 0 0
pow∗ 1681 221 1379 2.25E − 205 1600 0 0.00E + 00 1600 0 0.00E + 00 1600 0 0
sin∗ 1257 1257 0 0.00E + 00 1157 0 0.00E + 00 1257 0 0.00E + 00 1157 0 0
sinh∗ 1000 834 165 2.12E − 108 560 14 6.83E − 146 835 164 4.18E − 109 560 0 2.65E − 169
tan∗ 1257 865 392 1.07E − 41 942 0 5.38E − 284 865 392 1.07E − 41 942 0 2.69E − 284
tanh 1001 213 6 9.52E − 57 0 4 1.25E − 01 214 5 2.21E − 58 0 0 –

this operation may lead to significant errors. (3) Boundaries:
the automatic fix cannot correctly detect the boundary but
only one instruction, which may lead to instructions that
should be executed in the original precision still executed in
the high precision. The effects of the first two factors can be
seen by comparing the results from different thresholds, but
it is not easy to distinguish the last factor. To understand
the effect of the last factor, we further perform a fix which
fixes only the detected instruction in all true positives (FOD
column).

Furthermore, as the baselines for comparison, we also list
the errors produced by the original precision (OP column)
and those by the high precision (HP column).

From the table we can make the following observations:

• The results from the manual fix are much more accurate
than both the original precision and the high precision.
On all functions, the average errors from the manual
fix are the smallest, which are usually smaller than
the original precision several orders of magnitude, and
are greatly smaller than the high precision on many
functions with precision-specific operations.

• The results from automatic fix are also more accurate
than the original precision and the high precision in
the vast majority of cases. At a proper threshold,
the automatic fix can have a close performance to the
manual fix. For example, For threshold 1010, on all
of the functions except pow, the error is close to the

627

Table 9: Inaccuracies reported in previous work.
Function Reported error Actual error Paper
exprel 2 2.85E + 00 5.25E − 12 [26]

synchrotron 1 5.35E − 03 2.24E − 13 [26]
synchrotron 2 3.67E − 03 5.97E − 15 [26]

equake around 5.00E − 01 – [2]

manual fix. The error of pow is mainly because of
relatively low recall under the high threshold 1010.

• When the detection precision decreases, the error of
automatic fix may increase because of excessive fixes.
For example, the error of tanh increases when the
threshold moves from 108 to 107.

• When the detection recall decreases, the errors of auto-
matic fix may increase noticeably because of missing
fixes. For pow, a precision-specific multiplication is ig-
nored when thresholds are 108 and 1010, which shows
a significant increase in error.

• Fixing only detected instruction and fixing all instruc-
tions have almost identical performance. Only slight
difference is observed from the function asinh and a-

cosh.

• Precision-specific operations may not always have a
significant effect on the result. For example, acos

contains precision-specific operations, but the error
from the high-precision is the same as the manual fix.
This is because although large errors may be produced
in the precision-specific operations, these errors may
not have a large effect on the final result. For example,
the result of precision-specific operation is converted to
an integer. In the semantics, the shadow value of the
integer is not tracked. The error of precision-specific
operation is lost, which dramatically produces a right
result.

The average errors cannot show on how many executions
one approach is superior to another. To further get this infor-
mation, we perform a sign test between the errors from the
fixed executions and the errors from the original executions
and high-precision executions. We chose the threshold at 107

for automatic fix, because 107 is a balance between precision
and recall. The result is shown in Table 8.

We can see that the manual fix outperforms both the o-
riginal execution and the high-precision execution, and all
results are significant because p is much smaller than 0.05.
Note some p-value cannot be calculated because there are too
few positive and negative instances [15]. We can also see that
the automatic fix outperforms the high-precision execution
in all functions, and outperforms the original execution in
all but the pow function. A further investigation reveals that
the detection approach detects a false positive, where the
detected instruction corrects the result with a stored estimat-
ed error. When we reduce the precision on this instruction,
we will use a high-precision error to correct a low-precision
result, leading to the inaccurate result.

6.3.5 RQ5: Are the errors reported in existing stud-
ies affected by precision-specific operations?

We reviewed the inaccuracies reported in two existing pub-
lications [26, 2] and checked whether they are possibly false

positives caused by precision-specific operations. For each
program reported to be inaccurate in the publications [26,
2], we investigate the source code of the program and collect
the C math functions called by the source code. If a function
contains precision-specific operations detected in our experi-
ments, we determine the program as a potential false positive.
Then we try to run the program using the input specified
in the publication, but with the precision-specific operations
fixed, and check whether the new error is significantly smaller
than the reported error.

The result is shown in Table 9. In total, we confirmed three
inaccuracies reported by Zou et al. [26] are false positives.
We also identify a potentially false positive in the errors
reported by Bao et al. [2]. The equake function is reported
to be inaccurate, but this function calls sin and cos, both
containing precision-specific operations, so the inaccuracy
might be caused by precision-specific operations. However,
we cannot confirm this because Bao et al. did not report
what input values are used to trigger the large errors in their
experiments. Though a range of a single number is reported,
but the input to the equake function is a matrix and it is not
clear for which number in the matrix the range is specified,
nor the size of the matrix.

This result implies that precision-specific operations may
have a non-trivial impact on existing detection approaches,
and need to be treated properly to get more precise results.

6.4 Threats to Validity
The main threat to internal validity lies within our i-

dentification of the true and false positives in the detected
operations. We have to manually read the code to iden-
tify whether an operation is precision-specific or not. To
reduce this threat, we performed an additional process to
validate the true positives. For each identified true positive,
we removed the fixing statements for this operation, and ran
the functions again for the inputs to see whether there is
a significant increase in errors for most inputs. The result
indicates our manual identification is correct.

The main threat to external validity is the representative-
ness of our subjects. The subjects are all from GLIBC, and it
is not clear how much the results can be generalized to other
subjects. Nevertheless, GLIBC is one of most widely-used
open source floating-point library and has been contributed
by a lot of developers. Thus, the precision-specific operations
in GLIBC should cover a large number of patterns in writing
precision-specific operations.

7. CONCLUSION
In this paper, we have presented a study around precision-

specific operations. The study shows that precision-specific
operations are widely spread, and, if not handled properly,
may cause existing approaches to act incorrectly. As we
analyzed, a lot of existing approaches may be affected by
precision-specific operations and some inaccuracies reported
in existing papers are false positives or potentially false posi-
tives due to precision-specific operations. Nevertheless, we
show that precision-specific operations can be detected based
on a simple heuristic. Also, though in general, it is difficult
to interpret precision-specific operation correctly, we can
have a lightweight solution that always execute the precision-
specific operations in the original precision. As our results
show, this lightweight solution successfully enables precision
tuning under the presence of precision-specific operations.

628

8. ARTIFACT DESCRIPTION

8.1 Materials
The artifact is a replication package for our experiment,

consisting of the following materials.

1. A tutorial on subject selection, experiment configura-
tion and how to run experimental scripts.

2. A virtual machine image with all tools and subjects
installed.

3. Open source tools the experiment depends on, such as
FPDebug, MPFR.

4. Experimental scripts that instrument subjects, detect
and fix precision-specific operations in subjects and
analyze the results.

5. Experimental data like instrumented subjects, discov-
ered precision-specific operations.

The artifact is published under MIT license (the open
source tools and subjects are published under their original
licenses) and can be downloaded4.

8.2 Tutorial
The tutorial provides step by step guidance for reproducing

our experiments. The tutorial covers two scenario: the virtual
machine and manual installation on a new machine. The
former is much simpler and is recommended. The later
involves the installation and configuration of several tools,
and the change of scripts, and is only recommended if you
plan to modify our code for new tools and experiments.

8.3 Virtual Machine Image
The virtual machine has tools installed (FPDebug, GMP,

MPFR) and configured. The two versions of instrumented
GLIBC are also installed. The scripts and data are also
placed in the virtual machine so that rerunning the exper-
iment only needs a few commands, which are described in
the tutorial.

8.4 Tools
Our experiments depend on several open source tools. We

use FPDebug [4] to tune precision. FPDebug further relies on
a modified MPFR, a C library for multiple-precision floating-
point computations with correct rounding, for more accurate
computations. LLVM and CLANG are used to instrument
the subjects. All these tools are installed on the virtual
machine except LLVM and CLANG.

8.5 Scripts
We provide scripts to run the experiment, including instru-

mentation, the detection and fixing approach, and analysis
for the results. Here we briefly introduce how to replicate
our experiment in the virtual machine.

The experiments are implemented as two steps. The first
is to detect and fix precision-specific operations. The second
is to analyze the results. Invoking the following command
would perform the first step.

4https://github.com/floatfeather/PSO/tree/master/
artifact

cd /home/artifact/work/exe-art
./run_2.sh

The second step is implemented as four different script-
s. The first script analyzes the precision and recall of the
detection approach, and can be invoked using the following
commands.

cd /home/artifact/work/exe-art
g++ ErrorProcess.cpp -o ErrorProcess
./ErrorProcess

The rest three scripts analyze respectively for the three
types of fixing in our experiment, and can be invoked by the
following commands.

cd /home/artifact/work/base-art
./run_auto.sh
./run_manual.sh
./run_fixlast.sh

The results will be stored in result_auto_E.csv, result_
manual.csv and result_fixlast.csv. E stands for the pa-
rameter E used in our detection approach.

8.6 Data
The data include subject functions and other data needed

for the experiments, such as accurate outputs for each subject
function. The data also include a list of precision-specific
operations found in the double version of the GNU C math
library. The tutotial gives a more detailed description of the
data.

9. REFERENCES
[1] A. Ayad and C. Marché. Multi-prover verification of

floating-point programs. In Proc. IJCAR, pages
127–141, 2010.

[2] T. Bao and X. Zhang. On-the-fly detection of
instability problems in floating-point program
execution. In Proc. OOPSLA, pages 817–832, 2013.

[3] T. Bao, Y. Zheng, and X. Zhang. White box sampling
in uncertain data processing enabled by program
analysis. In OOPSLA ’12, pages 897–914, 2012.

[4] F. Benz, A. Hildebrandt, and S. Hack. A dynamic
program analysis to find floating-point accuracy
problems. In Proc. PLDI, pages 453–462, 2012.

[5] S. Boldo and J.-C. Filliâtre. Formal verification of
floating-point programs. In Proc. ARITH, pages
187–194, 2007.

[6] S. Boldo and G. Melquiond. Flocq: A unified library
for proving floating-point algorithms in coq. In Proc.
ARITH, pages 243–252, 2011.

[7] S. Chaudhuri, S. Gulwani, R. Lublinerman, and
S. Navidpour. Proving programs robust. In ESEC/FSE
’11, pages 102–112, 2011.

[8] W.-F. Chiang, G. Gopalakrishnan, Z. Rakamaric, and
A. Solovyev. Efficient search for inputs causing high
floating-point errors. In PPoPP, pages 43–52, 2014.

[9] E. Darulova and V. Kuncak. Trustworthy numerical
computation in scala. In Proc. OOPSLA, pages
325–344, 2011.

[10] E. Darulova and V. Kuncak. Sound compilation of
reals. In POPL, pages 235–248, 2014.

[11] T. J. Dekker. A floating-point technique for extending
the available precision. Numerische Mathematik,
18(3):224–242, 1971.

629

[12] E. Goubault and S. Putot. Static analysis of numerical
algorithms. In Proc. SAS, pages 18–34, 2006.

[13] T. Hickey, Q. Ju, and M. H. Van Emden. Interval
arithmetic: From principles to implementation. Journal
of the ACM, 48(5):1038–1068, 2001.

[14] M. O. Lam, J. K. Hollingsworth, B. R. de Supinski,
and M. P. Legendre. Automatically adapting programs
for mixed-precision floating-point computation. In ICS,
pages 369–378, 2013.

[15] M. Neuhauser. Nonparametric statistical tests: A
computational approach. CRC Press, 2011.

[16] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and
dot product. SIAM Journal on Scientific Computing,
26(6):1955–1988, 2005.

[17] P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and
Z. Tatlock. Automatically improving accuracy for
floating point expressions. In PLDI, pages 1–11, 2015.

[18] S. Putot, E. Goubault, and M. Martel. Static
analysis-based validation of floating-point
computations. In Numerical software with result
verification, pages 306–313. 2004.

[19] C. Rubio-González, C. Nguyen, H. D. Nguyen,
J. Demmel, W. Kahan, K. Sen, D. H. Bailey, C. Iancu,
and D. Hough. Precimonious: Tuning assistant for
floating-point precision. In SC, pages 27:1–27:12, 2013.

[20] E. Schkufza, R. Sharma, and A. Aiken. Stochastic
optimization of floating-point programs with tunable
precision. In PLDI, pages 53–64, 2014.

[21] J. Stolfi and L. De Figueiredo. An introduction to
affine arithmetic. TEMA Tend. Mat. Apl. Comput.,
4(3):297–312, 2003.

[22] E. Tang, E. T. Barr, X. Li, and Z. Su. Perturbing
numerical calculations for statistical analysis of
floating-point program (in)stability. In Proc. ISSTA,
pages 131–142, 2010.

[23] X. Zhang, D. Zhang, Y. Le Traon, Q. Wang, and
L. Zhang. Roundtable: Research opportunities and
challenges for emerging software systems. Journal of
Computer Science and Technology, 30(5):935–941, 2015.

[24] S. Zhao. A calculator with controlled error, example
section (in Chinese).
http://www.zhaoshizhong.org/download.htm, 2015.
[Accessed 12-February-2015].

[25] S.-Z. Zhao. Trusted “arithmetic expressions calculator”.
In Proc. ControlTech (in Chinese), pages 7–15, 2014.

[26] D. Zou, R. Wang, Y. Xiong, L. Zhang, Z. Su, and
H. Mei. A genetic algorithm for detecting significant
floating-point inaccuracies. In ICSE, pages 529–539,
2015.

630

