Detecting Floating-Point Errors via Atomic Conditions

<u>Daming Zou</u>, Muhan Zeng, Yingfei Xiong, Zhoulai Fu, Lu Zhang, Zhendong Su POPL 2020

New Orleans, Louisiana, United States

Analyzing Floating-Point Errors in a Flash

- DEMC [POPL 19]: ~8 hours
 - Analyzing 49 functions from GNU Scientific Library

- Our tool ATOMU: ~21 seconds
 - 1000+x faster
 - 40% more detected FP errors

Outline

Floating-Point Errors

- Some inputs may trigger significant FP errors
- Considering:

$$f(x) = \frac{1-\cos(x)}{x^2}$$
 $\lim_{x\to 0} f(x) = 0.5$

```
def f(x):
    num = 1-math.cos(x)
    den = x*x
    return num/den
// Using double precision (64 bits)
```

0.4996003610813205

Accurate result (Oracle): 0.4999999999999999

Detecting Floating-Point Errors

- ullet Given: A FP program \hat{f}
- Goal: An input triggers significant FP errors

- Existing approaches:
 - Treat the FP program as a *black-box*
 - Heavily depend on the *oracle* f
- How to get the oracle f?
 - Using $high\ precision\ program\ \hat{f}_{high}$ to simulate

Outline

The Expenses of Using \hat{f}_{hiqh}

- \hat{f}_{high} is expensive in *computation cost*
 - Even quadruple precision (128 bits) are 100x slower than double precision (64 bits)
 - For arbitrary precision (MPFR), the overhead further increases
- \hat{f}_{high} is expensive in *development cost*. One cannot simply change all variables to high-precision types because of:
 - Precision-related operations
 - Precision-specific operations

The Expenses of Using \hat{f}_{high}

- Precision-related operations
 - Widely exist in numerical libraries

• Example: calculating sin(x) for x near 0 based on *Taylor series* at x=0:

$$\sin(x) = x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + O(x^8)$$

- Accurate results need:
 - Higher precision types
 - Manually add more terms

```
double sin(double x) {
  if (x > -0.01 \&\& x < 0.01) {
    double y = x*x;
    double c1 = -1.0 / 6.0;
    double c2 = 1.0 / 120.0;
    double c3 = -1.0 / 5040.0;
    double sum =
     x*(1.0 + y*(c1 + y*(c2 + y*c3)));
    return sum;
else { ... } }
```

The Expenses of Using \hat{f}_{high}

- Precision-specific operations
- A simplified example from GNU C Library:

```
double round(double x) { double n = 6755399441055744.0; // 3 << 51 return (x + n) - n; } Magic number and only works on double precision (64 bits).
```

- Semantics: rounding x to nearest integer value
- Higher precision types will violate the semantics and lead to wrong results

Need for Oracle-Free Approach

- Existing approaches need oracle result to distinguish the inputs
- Oracles are hard to obtain
 - Development cost
 - Computation cost

 How to analyze FP programs without oracle?

Outline

Analyzing the Floating-Point Error

- Atomic Operation
 - Elementary arithmetic: +, -, ×, ÷.
 - Basic functions: sin, tan, exp, log, sqrt, pow, ...
- Errors in atomic operations
 - Guaranteed to be small by IEEE-754 and GNU C Library reference

Why does significant error still exist?

Certain operations may amplify the FP errors

Analyzing the Floating-Point Error

- Condition Numbers
 - Measures the inherent stability (sensitivity) of a mathematical function

$$Err_{rel}(f(x), f(x + \Delta x)) = Err_{rel}(x, x + \Delta x) \cdot \left| \frac{xf'(x)}{f(x)} \right|$$

- The condition number $\Gamma_f(x) = \left| \frac{xf'(x)}{f(x)} \right|$ measures how much the relative error will be *amplified* from input to output.
- Example: $\Gamma_{\cos}(x) = |x \cdot \tan(x)|$

Key Insight

Atomic condition: condition numbers on atomic FP operations

- We can analyze FP programs by leveraging atomic condition
 - Errors amplified by atomic conditions
 - Atomic conditions are dominant factor for FP errors

- We can use native FP types for computing atomic conditions
 - Without high precision types
 - Accelerating the analysis

Motivation Example

$$f(x) = \frac{1 - \cos(x)}{x^2}$$

$$\lim_{x \to 0} f(x) = 0.5$$

Error Amplification by Atomic Condition when x = 1e-7

Input	Atomic condition	Output
1.0e-7	1e-14	9.99999999999500 <u>4</u> e-01
1.0 9.99999999999900 <u>4</u> e-01	2.0016e+14 2.0016e+14	4.99 <u>600361081320443</u> e-15
1.0e-7 1.0e-7	1 1	9.999999999998 <u>41</u> e-15
4.99 <u>600361081320443</u> e-15 9.9999999999998 <u>41</u> e-15		4.99 <u>600361081320499</u> e-01

Error Propagation and Atomic Condition

- Atomic Operation OP:
 - Error in input $arepsilon_x$
 - Error in output $\,arepsilon_{z}\,$
 - Atomic condition $\Gamma_{op}(x)$
 - Introduced error $\mu_{op}(x)$

$$\varepsilon_z = \varepsilon_x \Gamma_{op}(x) + \mu_{op}(x)$$

// Can be generalized to multivariate with partial derivatives

• The *introduced error* is guaranteed to be small. The *atomic condition* is the *dominant factor* of floating-point error.

Error Propagation and Atomic Condition

Pre-calculated atomic condition formulae

- Potential unstable operations:
 - Atomic condition becomes significantly large (→ ∞) if its operand(s) falls into danger zone
- Stable operations:
 - Atomic condition always ≤ 1

Pre-calculated atomic condition formulae

$$\Gamma_f(x) = \left| \frac{xf'(x)}{f(x)} \right|$$

Operation	Atomic Condition	Danger Zone	
x + y	$\left \frac{x}{x+y}\right , \left \frac{y}{x+y}\right $	$x \approx -y$	
cos(x)	$ x * \tan(x) $	$x \to n\pi + \frac{\pi}{2}, n \in \mathbb{Z}$	
$\log(x)$	$\left \frac{1}{\log(x)}\right $	$x \rightarrow 1$	
x * y	1, 1	-	
\sqrt{x}	0.5	-	

Atomic Condition-Guided Search

Outline

Evaluation

Subjects: 88 functions from GNU Scientific Library

• Definition of significant error: relative error $\geq 10^{-3}$

On 88 GSL Functions	FP Operations	Potential Unstable Operations	Unstable Operations
#operations	90	40	12

Evaluation — Effectiveness

ATOMU finds significant errors in 42 of the 88 GSL functions

Evaluation — Effectiveness

- Compared with the state-of-the-art technique, Атоми
 - Finds significant errors in 8 more functions (28 vs. 20)
 - Incurs no false negatives

```
gsl_sf_sin
gsl_sf_cos
gsl_sf_sinc
gsl_sf_dilog
gsl_sf_expint_E1
gsl_sf_expint_E2
gsl_sf_lngamma
gsl sf lambert W0
```

Evaluation – Runtime Cost

- Avg. cost per GSL Function
 - ATOMU + oracle (validation): 0.34+0.09 seconds
 - 1000+x faster than DEMC [POPL 2019]
 - 100+x faster than LSGA [ICSE 2015]

- ATOMU achieves *orders of speedups* over the state-of-the-art
 - Much more practical

Take-Home Messages

- ATOMU: Super fast / effective technique for detecting FP errors
- Atomic condition: Powerful tool for analyzing FP programs
 - Oracle-free
 - Native
 - Informative
- Expected broader applications based on atomic condition
 - Debugging, Repair, Synthesis, etc.

https://github.com/FP-Analysis/atomic-condition