Detecting Floating-Point Errors via Atomic Conditions

Daming Zou, Muhan Zeng, Yingfei Xiong, Zhoulai Fu, Lu Zhang, Zhendong Su

POPL 2020
New Orleans, Louisiana, United States
Analyzing Floating-Point Errors in a Flash

• DEMC [POPL 19]: ~8 hours
 • Analyzing 49 functions from GNU Scientific Library

• Our tool ATOMU: ~21 seconds
 • 1000+x faster
 • 40% more detected FP errors
Outline

• What is floating-point error?
• Existing approaches
Floating-Point Errors

• Some inputs may trigger significant FP errors

• Considering:

\[f(x) = \frac{1 - \cos(x)}{x^2} \quad \lim_{x \to 0} f(x) = 0.5 \]

```python
def f(x):
    num = 1 - math.cos(x)
    den = x*x
    return num/den
```

```
>>> f(1e-7)
0.4996003610813205

Accurate result (Oracle):
0.499999999999999583
```

// Using double precision (64 bits)
Detecting Floating-Point Errors

• Given: A FP program \(\hat{f} \)
• Goal: An input triggers significant FP errors

• Existing approaches:
 • Treat the FP program as a \textit{black-box}
 • Heavily depend on the \textit{oracle} \(f \)
• How to get the oracle \(f \)?
 • Using \textit{high precision program} \(\hat{f}_{\text{high}} \) to simulate

<table>
<thead>
<tr>
<th>Input 0</th>
<th>Oracle Result</th>
<th>FP Result</th>
<th>Error 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input 1</th>
<th>Oracle Result</th>
<th>FP Result</th>
<th>Error 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline

- What is floating-point error?
- Existing approaches

BACKGROUND

- Oracles are hard to obtain
- Difficulties for high-precision types

DIFFICULTIES

APPROACH

EVALUATION
The Expenses of Using \hat{f}_{high}

• \hat{f}_{high} is expensive in *computation cost*
 • Even quadruple precision (128 bits) are 100x slower than double precision (64 bits)
 • For arbitrary precision (MPFR), the overhead further increases

• \hat{f}_{high} is expensive in *development cost*. One cannot simply change all variables to high-precision types because of:
 • Precision-related operations
 • Precision-specific operations
The Expenses of Using \hat{f}_{high}

- **Precision-related operations**
 - Widely exist in numerical libraries

- **Example:** calculating $\sin(x)$ for x near 0 based on *Taylor series* at $x=0$:

 \[
 \sin(x) = x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + O(x^8)
 \]

- **Accurate results need:**
 - Higher precision types
 - Manually add more terms

```cpp
double sin(double x) {
  if (x > -0.01 && x < 0.01) {
    double y = x*x;
    double c1 = -1.0 / 6.0;
    double c2 = 1.0 / 120.0;
    double c3 = -1.0 / 5040.0;
    double sum =
        x*(1.0 + y*(c1 + y*(c2 + y*c3)));
    return sum;
  }
  else { ... } }
```
The Expenses of Using f_{high}

- **Precision-specific operations**
- A simplified example from GNU C Library:

  ```c
  double round(double x) {
    double n = 6755399441055744.0;  // 3 << 51
    return (x + n) - n;  
  }  
  ```

 Magic number and only works on double precision (64 bits).

- Semantics: rounding x to nearest integer value
- Higher precision types will violate the semantics and lead to wrong results
Need for Oracle-Free Approach

• Existing approaches need oracle result to distinguish the inputs
• Oracles are hard to obtain
 • Development cost
 • Computation cost

• How to analyze FP programs without oracle?
Outline

- Background
 - What is floating-point error?
 - Existing approaches

- Difficulties
 - Oracles are hard to obtain
 - Difficulties for high-precision types

- Approach
 - Analysis based on Atomic Condition
 - A novel detecting approach: ATOMU

- Evaluation
Analyzing the Floating-Point Error

• Atomic Operation
 • Elementary arithmetic: +, −, ×, ÷.
 • Basic functions: sin, tan, exp, log, sqrt, pow, ...

• Errors in atomic operations
 • Guaranteed to be small by IEEE-754 and GNU C Library reference

• Why does significant error still exist?

• Certain operations may amplify the FP errors
Analyzing the Floating-Point Error

• **Condition Numbers**

 • Measures the inherent stability (sensitivity) of a mathematical function

 \[
 Err_{rel}(f(x), f(x + \Delta x)) = Err_{rel}(x, x + \Delta x) \cdot \left| \frac{xf'(x)}{f(x)} \right|
 \]

 • The condition number \(\Gamma_{f}(x) = \left| \frac{xf'(x)}{f(x)} \right| \) measures how much the relative error will be *amplified* from input to output.

 • Example: \(\Gamma_{\cos}(x) = |x \cdot \tan(x)| \)
Key Insight

Atomic condition: condition numbers on atomic FP operations

- We can analyze FP programs by leveraging atomic condition
 - Errors amplified by atomic conditions
 - Atomic conditions are dominant factor for FP errors

- We can use native FP types for computing atomic conditions
 - Without high precision types
 - Accelerating the analysis
Motivation Example

\[f(x) = \frac{1 - \cos(x)}{x^2} \]

\[\lim_{x \to 0} f(x) = 0.5 \]

def f(x):
 v1 = cos(x)
 v2 = 1.0 - v1
 v3 = x * x
 v4 = v2 / v3
 return v4

Error Amplification by Atomic Condition when \(x = 1e-7 \)

<table>
<thead>
<tr>
<th>Input</th>
<th>Atomic condition</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0e-7</td>
<td>1e-14</td>
<td>9.9999999999999500e-01</td>
</tr>
<tr>
<td>1.0</td>
<td>9.99999999999995004e-01</td>
<td>2.0016e+14</td>
</tr>
<tr>
<td>2.0016e+14</td>
<td>4.99600361081320443e-15</td>
<td></td>
</tr>
<tr>
<td>1.0e-7</td>
<td>1e-14</td>
<td>9.99999999999999841e-15</td>
</tr>
<tr>
<td>1.0e-7</td>
<td>1e-14</td>
<td>9.99999999999999841e-15</td>
</tr>
</tbody>
</table>
Error Propagation and Atomic Condition

• Atomic Operation OP:
 • Error in input ε_x
 • Error in output ε_z
 • Atomic condition $\Gamma_{op}(x)$
 • Introduced error $\mu_{op}(x)$

$$\varepsilon_z = \varepsilon_x \Gamma_{op}(x) + \mu_{op}(x)$$

// Can be generalized to multivariate with partial derivatives

• The introduced error is guaranteed to be small. The atomic condition is the dominant factor of floating-point error.
Error Propagation and Atomic Condition

• Pre-calculated atomic condition formulae

• Potential unstable operations:
 • Atomic condition becomes significantly large ($\rightarrow \infty$) if its operand(s) falls into danger zone

• Stable operations:
 • Atomic condition always ≤ 1

\[
\Gamma_f(x) = \left| \frac{x f'(x)}{f(x)} \right|
\]

<table>
<thead>
<tr>
<th>Operation</th>
<th>Atomic Condition</th>
<th>Danger Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x + y$</td>
<td>$\left</td>
<td>\frac{x}{x+y} \right</td>
</tr>
<tr>
<td>$\cos(x)$</td>
<td>$</td>
<td>x \cdot \tan(x)</td>
</tr>
<tr>
<td>$\log(x)$</td>
<td>$\left</td>
<td>\frac{1}{\log(x)} \right</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>$x \cdot y$</td>
<td>1, 1</td>
<td>-</td>
</tr>
<tr>
<td>\sqrt{x}</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
</tbody>
</table>
Atomic Condition-Guided Search

Input 0
- OP_0
- Var 1
 - OP_1
 - Var 2
 - OP_2
 - AC_0

Input 1
- OP_0
- Var 1
 - OP_1
 - Var 2
 - OP_2
 - AC_0

Input 2
- OP_0
- Var 1
 - OP_1
 - Var 2
 - OP_2
 - AC_1

Input 3
- OP_0
- Var 1
 - OP_1
 - Var 2
 - OP_2
 - AC_1
Outline

- Analysis based on Atomic Condition
- A novel detecting approach: ATOMU

- What is floating-point error?
- Existing approaches

- Oracles are hard to obtain
- Difficulties for high-precision types

- How effective?
- How fast?
Evaluation

• Subjects: 88 functions from GNU Scientific Library

• Definition of significant error: relative error $\geq 10^{-3}$

<table>
<thead>
<tr>
<th>On 88 GSL Functions</th>
<th>FP Operations</th>
<th>Potential Unstable Operations</th>
<th>Unstable Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>#operations</td>
<td>90</td>
<td>40</td>
<td>12</td>
</tr>
</tbody>
</table>
Evaluation – Effectiveness

ATOMU finds significant errors in 42 of the 88 GSL functions
Evaluation – Effectiveness

• Compared with the state-of-the-art technique, ATOMU
 • Finds significant errors in 8 more functions (28 vs. 20)
 • Incurs no false negatives

- gsl_sf_sin
- gsl_sf_cos
- gsl_sf_sinc
- gsl_sf_dilog
- gsl_sf_expint_E1
- gsl_sf_expint_E2
- gsl_sf lngamma
- gsl_sf_lambert_W0
Evaluation – Runtime Cost

• Avg. cost per GSL Function
 • ΑΤΟΜΥ + oracle (validation): 0.34+0.09 seconds
 • 1000+<i>x</i> faster than DEMC [POPL 2019]
 • 100+<i>x</i> faster than LSGA [ICSE 2015]

• ΑΤΟΜΥ achieves <i>orders of speedups</i> over the state-of-the-art
 • Much more practical
Take-Home Messages

• **ATOMU**: Super fast / effective technique for detecting FP errors
• **Atomic condition**: Powerful tool for analyzing FP programs
 • Oracle-free
 • Native
 • Informative
• **Expected broader applications** based on atomic condition
 • Debugging, Repair, Synthesis, etc.

https://github.com/FP-Analysis/atomic-condition