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Analyzing Floating-Point Errors in a Flash

e DEMC [POPL 19]: ~8 hours
* Analyzing 49 functions from GNU Scientific Library

e Qur tool ATomu: ~21 seconds

* 1000+x faster
* 40% more detected FP errors



Outline

. What is floating-point )
error?
» Existing approaches

BACKGROUND

APPROACH




Floating-Point Errors

* Some inputs may trigger significant FP errors

* Considering:

fO) = =32 limf(x) =05

x2
def f(x): >>> f( )
nhum = 1-math.cos(x) 0.499
den = X*Xx

Accurate result (Oracle):
0.499999999999999583

return num/den

// Using double precision (64 bits)



Detecting Floating-Point Errors

* Given: A FP program f
* Goal: An input triggers significant FP errors

* Existing approaches:

Oracl
* Treat the FP program as a black-box
* Heavily depend on the oracle f m<
* How to get the oracle f? W
Oracle

* Using high precision program fh;gh to simulate
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The Expenses of Using fhz-gh

* fhigh is expensive in computation cost

e Even quadruple precision (128 bits) are 100x slower than double precision (64
bits)
* For arbitrary precision (MPFR), the overhead further increases

* fhigh is expensive in development cost. One cannot simply change all
variables to high-precision types because of:
* Precision-related operations
* Precision-specific operations



The Expenses of Using fhz-gh

* Precision-related operations double sin(double x) {

* Widely exist in numerical libraries if (x > -0.01 && x < 0.01) {
double y = x*x;
. . double c1 = -1.0 / 6.0;
* Example: calculating sin(x) for x near 0 double c2 = 1.0 / 120.0;
based on Taylor series at x=0: double c3 = -1.0 / 5040.0;
double sum =
sin(z) =  — 27 i z° &’ 1 O(2®) X*(1.0 + y*(cl + y*(c2 + y*c3)));
6 120 5040 return sum;
}
* Accurate results need: else { ... } }

* Higher precision types
* Manually add more terms



The Expenses of Using fhz-gh

* Precision-specific operations
* A simplified example from GNU C Library:

double round(double x) {

double n = 6755399441055744.0; // 3 << 51
return (X + n) - n; }

e Semantics: rounding x to nearest integer value

* Higher precision types will violate the semantics and lead to wrong
results



Need for Oracle-Free Approach

Em<

* Existing approaches need oracle
result to distinguish the inputs

* Oracles are hard to obtain
* Developmentcost
* Computation cost

* How to analyze FP programs
without oracle?
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Analyzing the Floating-Point Error

* Atomic Operation
* Elementary arithmetic: +, -, x, +.
e Basic functions: sin, tan, exp, log, sqrt, pow, ...

* Errorsin atomic operations
* Guaranteed to be small by IEEE-754 and GNU C Library reference

 Why does significant error still exist?

e Certain operations may amplify the FP errors
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Analyzing the Floating-Point Error

e Condition Numbers
* Measures the inherentstability (sensitivity) of a mathematical function

zf'(x)
f(x)

Errre(f(x), f(x + Azx)) = Errpe(z, x + Azx) -

zf'(x)

* The conditionnumber '+(*)=|=75"| measures how much the relative error
will be amplified from input to output.

e Example: Tcos(x) = |x - tan(x)|



Key Insight
Atomic condition: condition numbers on atomic FP operations

* We can analyze FP programs by leveraging atomic condition
* Errors amplified by atomic conditions
e Atomic conditionsare dominantfactor for FP errors

* We can use native FP types for computing atomic conditions
* Without high precision types
* Accelerating the analysis

14
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Motivation Example

() 1 — cos(x)
X =
x? Error Amplification by Atomic Condition
lim f(x) = 0.5 when x = 1le-7
x—0
Atomic condition Output
def ‘F(X)Z .0e-7 le-14 9.99999999999995004e-01

vl = cos(x)
v2 = 1.0 - vl

.0 2.0016e+14
.99999999999995004e-01 2.0016e+14 TTT vosbldeiklae sl

O PR OR R

v3 = x * X 'g::; i 9.99999999999999841e-15
vd = v2 / v3 |

.99600361081320443e-15 1
return v4 199999999999999841e-15 1 4.99600361081320499¢-01



Error Propagation and Atomic Condition

* Atomic Operation OP:
* Errorininput &,
* Errorinoutput &,
» Atomic condition Fop(az)
* Introduced error ,Lbop(llf)

. = ealop(@) + fiop ()

* The is guaranteed to be small. The
the dominant factor of floating-point error.

IS
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Error Propagation and Atomic Condition

. i Pre-calculated atomic zf'(x)
* Pre-calculated atomic condition condition formulae Ly(z) = ()
formulae P
: : X y
* Potential unstable operations: Xty ‘x+ny+y X~ —y
* Atomic condition becomes cos(x) x*tan(x)] x> nw+on€L
significantly large (— o) if its 2
operand(s) falls into danger zone log(x) ‘1 1( ) x> 1
og(x

* Stable operations:
e Atomic conditionalways < 1 X%y 1.1 _



Atomic Condition-Guided Search
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Evaluation

* Subjects: 88 functions from GNU Scientific Library

e Definition of significant error: relative error > 1073

On 88 GSL Functions FP Operations IR Unstable Operations
Operations

#operations

20



Evaluation — Effectiveness

Atomu finds significant errors in 42 of the 88 GSL functions
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Evaluation — Effectiveness

 Compared with the state-of-the-art technique, ATomu
e Finds significant errors in 8 more functions (28 vs. 20)
* Incurs no false negatives

gsl sf sin
gsl st cos
gsl sf sinc
gsl st dilog

gsl st expint E1
gsl sf expint E2
gsl sf lngamma
gsl st lambert WO



Evaluation — Runtime Cost

* Avg. cost per GSL Function
e ATOMU + oracle (validation): 0.34+0.09 seconds
* 1000+x faster than DEMC [POPL 2019]
* 100+x faster than LSGA [ICSE 2015]

* ATOMU achieves orders of speedups over the state-of-the-art
* Much more practical



Take-Home Messages

» Aromu: Super fast / effective technique for detecting FP errors

e Atomic condition: Powerful tool for analyzing FP programs
e Oracle-free
* Native
* Informative

* Expected broader applications based on atomic condition
* Debugging, Repair, Synthesis, etc.

‘ ’ https://github.com/FP-Analysis/atomic-condition

24



