
Detecting	Floating-Point	Errors	
via	

Atomic	Conditions
Daming	Zou,	Muhan Zeng,	Yingfei Xiong,	Zhoulai Fu,	Lu	Zhang,	Zhendong	Su

POPL	2020
New	Orleans,	Louisiana,	United	States



Analyzing	Floating-Point	Errors	in	a	Flash

• DEMC	[POPL	19]:	~8	hours
• Analyzing	49	functions	from	GNU	Scientific	Library

• Our	tool	ATOMU:	~21	seconds
• 1000+x	faster
• 40%	more	detected	FP	errors

2



Outline

• What is floating-point 
error?
• Existing approaches

BACKGROUND DIFFICULTIES

EVALUATIONAPPROACH

3



Floating-Point	Errors

• Some	inputs	may	trigger	significant	FP	errors
• Considering:

𝑓 𝑥 = 	 %&'()	(+)
+-

lim
+→2

𝑓 𝑥 	 = 0.5

def f(x):
num = 1-math.cos(x)
den = x*x
return num/den

>>> f(1e-7)
0.4996003610813205

Accurate result (Oracle):
0.499999999999999583//	Using	double precision	(64	bits)

4



Detecting	Floating-Point	Errors

• Given:	A	FP	program
• Goal:	An	input triggers	significant	FP	errors

• Existing	approaches:
• Treat	the	FP	program	as	a	black-box
• Heavily	depend	on	the	oracle

• How	to	get	the	oracle				?
• Using	high	precision	program	 										to	simulate

5

Input 0

Oracle 
Result

FP
Result

Error 0

Input 1

Oracle 
Result

FP
Result

Error 1



• What is floating-point 
error?
• Existing approaches

Outline

• Oracles are hard to 
obtain
• Difficulties for high-

precision types

BACKGROUND DIFFICULTIES

EVALUATIONAPPROACH

6



The	Expenses	of	Using	

• is	expensive	in	computation	cost
• Even	quadruple	precision	(128	bits)	are	100x	slower	than	double	precision	(64	
bits)
• For	arbitrary	precision	(MPFR),	the	overhead	further	increases

• is	expensive	in	development	 cost.	One	cannot	simply	change	all	
variables	to	high-precision	types	because	of:
• Precision-related	operations
• Precision-specific	operations

7



• Precision-related	operations
• Widely	exist	in	numerical	libraries

• Example:	calculating	sin(x)	for	x	near	0	
based	on	Taylor	series	at	x=0:

• Accurate	results	need:
• Higher	precision	types
• Manually	add more	terms

The	Expenses	of	Using	

double sin(double x) {
if (x > -0.01 && x < 0.01) {

double y = x*x;
double c1 = -1.0 / 6.0;
double c2 = 1.0 / 120.0;
double c3 = -1.0 / 5040.0;
double sum = 

x*(1.0 + y*(c1 + y*(c2 + y*c3)));
return sum;

}
else { ... } }

8



• Precision-specific	operations
• A	simplified	example	from	GNU	C	Library:

double round(double x) {
double n = 6755399441055744.0; // 3 << 51
return (x + n) - n; }

• Semantics:	rounding	x	to	nearest	integer	value
• Higher	precision	types	will	violate	the	semantics	and	lead	to	wrong	
results

The	Expenses	of	Using	

Magic	number	 and	only	works	on	double	precision	 (64	bits).	

9



Need	for	Oracle-Free	Approach

• Existing	approaches	need	oracle	
result	to	distinguish	the	inputs
• Oracles	are	hard	to	obtain
• Development	cost
• Computation	cost

• How	to	analyze	FP	programs	
without	oracle?

Input 0

Oracle 
Result

FP
Result

Error 0

Input 1

Oracle 
Result

FP
Result

Error 1

Input 2 FP
Result

10



• Oracles are hard to 
obtain
• Difficulties for high-

precision types

• What is floating-point 
error?
• Existing approaches

Outline

• Analysis based on 
Atomic Condition
• A novel detecting 

approach: ATOMU

BACKGROUND DIFFICULTIES

EVALUATIONAPPROACH

11



• Atomic	Operation
• Elementary	arithmetic:	+,	−,	×,	÷.
• Basic	functions:	sin,	tan,	exp,	log,	sqrt,	pow,	…

• Errors in	atomic	operations
• Guaranteed	to	be	small	by	IEEE-754	and	GNU	C	Library	reference

• Why	does	significant	error	still	exist?

• Certain	operations	may	amplify the	FP	errors

Analyzing	the	Floating-Point	Error
12



• Condition	Numbers
• Measures	the	inherent	stability	(sensitivity)	of	a	mathematical	function

• The	condition	number																					 measures	how	much	the	relative	error	
will	be	amplified from	input	to	output.

• Example:	

13

Analyzing	the	Floating-Point	Error



Key	Insight

Atomic	condition:	condition	numbers	on	atomic	FP	operations

• We	can	analyze	FP	programs	by	leveraging	atomic	condition
• Errors	amplified by	atomic	conditions
• Atomic	conditions	are	dominant	factor	for	FP	errors

• We	can	use	native	FP	types	for	computing	atomic	conditions
• Without	high	precision	types
• Accelerating	the	analysis

14



Motivation	Example

def f(x):
v1 = cos(x)
v2 = 1.0 - v1
v3 = x * x
v4 = v2 / v3
return v4

15

𝑓 𝑥 =	
1 − cos	(𝑥)

𝑥;

lim
+→2

𝑓 𝑥 = 0.5
Error	Amplification	by	Atomic	Condition	
when	x	=	1e-7

Input Atomic condition Output

1.0e-7 1e-14 9.99999999999995004e-01

1.0
9.99999999999995004e-01

2.0016e+14
2.0016e+14 4.99600361081320443e-15

1.0e-7
1.0e-7

1
1 9.99999999999999841e-15

4.99600361081320443e-15
9.99999999999999841e-15

1
1 4.99600361081320499e-01



Error	Propagation	and	Atomic	Condition

• Atomic	Operation OP:
• Error	in	input
• Error	in	output
• Atomic	condition
• Introduced	error

//	Can	be	generalized	to	multivariate	with	partial	derivatives

• The	introduced	error	is	guaranteed	to	be	small.	The	atomic	condition is	
the	dominant	 factor	of	floating-point	error.

16



Error	Propagation	and	Atomic	Condition

• Pre-calculated	atomic	condition	
formulae

• Potential	unstable	operations:
• Atomic	condition	becomes	
significantly	large	(→ ∞)	if	its	
operand(s)	falls	into	danger	zone

• Stable	operations:
• Atomic	condition	always	≤ 1

17

Operation Atomic 
Condition Danger Zone

𝑥 + 𝑦
𝑥

𝑥 + 𝑦 ,
𝑦

𝑥 + 𝑦 𝑥 ≈ −𝑦

cos	(𝑥) 𝑥 ∗ tan	(𝑥) 𝑥 → 𝑛𝜋 +
𝜋
2 ,𝑛 ∈ ℤ

log	(𝑥)
1

log	(𝑥) 𝑥 → 1

… … …

𝑥 ∗ 𝑦 1, 1 -

𝑥 0.5 -

… … …

Pre-calculated	atomic	
condition	formulae



Atomic	Condition-Guided	Search
18

Input	0

OP_0

OP_1

OP_2

Var 1

Var 2

AC_0

AC_1

AC_2

Input	1

OP_0

OP_1

OP_2

Var 1

Var 2

AC_0

AC_1

AC_2

Input	2

Input	3



• Analysis based on 
Atomic Condition
• A novel detecting 

approach: ATOMU

• Oracles are hard to 
obtain
• Difficulties for high-

precision types

• What is floating-point 
error?
• Existing approaches

Outline

• How effective?
• How fast?

BACKGROUND DIFFICULTIES

EVALUATIONAPPROACH

19



Evaluation

• Subjects:	88	functions	from	GNU	Scientific	Library

• Definition	of	significant	error:	relative	error	≥ 10&M

20

On	88	GSL	Functions FP	Operations Potential	Unstable
Operations UnstableOperations

#operations 90 40 12



Evaluation	– Effectiveness

ATOMU finds	significant	errors	in	42	of	the	88	GSL	functions

21



• Compared	with	the	state-of-the-art	technique,	ATOMU
• Finds	significant	errors	in	8	more	functions	(28	vs.	20)
• Incurs	no	false	negatives

gsl_sf_sin
gsl_sf_cos
gsl_sf_sinc
gsl_sf_dilog
gsl_sf_expint_E1
gsl_sf_expint_E2
gsl_sf_lngamma
gsl_sf_lambert_W0

Evaluation	– Effectiveness
22



Evaluation	– Runtime	Cost	

• Avg.	cost	per	GSL	Function
• ATOMU +	oracle	(validation):	0.34+0.09	seconds
• 1000+x	faster	than	DEMC			[POPL	2019]
• 100+x	faster	than	LSGA							[ICSE	2015]

• ATOMU achieves	orders	of	speedups	over	the	state-of-the-art
• Much	more	practical

23



Take-Home	Messages

• ATOMU:	Super	fast	/	effective	technique for	detecting	FP	errors
• Atomic	condition:	Powerful	tool	for	analyzing	FP	programs
• Oracle-free
• Native
• Informative

• Expected	broader	applications	based	on	atomic	condition
• Debugging,	Repair,	Synthesis,	etc.

24

https://github.com/FP-Analysis/atomic-condition


