
An Empirical Study of Fault
Localization Families and

Their Combinations
Daming Zou, Jingjing Liang, Yingfei Xiong, Michael D. Ernst, and Lu Zhang

ESEC/FSE 2019
Journal First Paper on TSE

Tallinn, Estonia
29 Aug 2019

Fault Localization (FL)

• Automated Fault Localization
• Using static and run-time information to locate the root cause of

failure.
• E.g., test coverage, program dependency, test output, etc.

• Typical output, a ranked suspicious list:

foo.java, line 12
foo.java, line 10 (Bingo!)
bar.java, line 5
...

Fault Localization Families

FL Family Information Source

Spectrum-based (SBFL) Test coverage information

Mutation-based (MBFL) Info from mutating the program

(Dynamic) Slicing Dynamic program dependencies

Stack trace analysis Stack trace when crash

Predicate switching Info from mutating the results of conditional
expressions

Information retrieval-based (IR-based) Bug reports

History-based Development history

Motivation

• Existing studies focus on comparison within family:

• This study tries to understand the correlation of different
families on real-world dataset. In terms of both effectiveness
and efficiency.

Ochiai(SBFL) vs. DStar(SBFL) vs. Tarantula(SBFL) vs. …

Performance Run-time cost

SBFL ? ?

MBFL ? ?

etc. ? ?

This empirical study…

• Covered a wide range of FL techniques from 7 families.

• Based on 357 real-world faults from Defects4j dataset.

• Proposed a combined technique that significantly outperforms
all existing techniques.

Research Questions

• RQ1: How effective are the standalone FL techniques?

• RQ2: How much are these techniques correlated?
• Reveals the possibility of combining them.

• RQ3: How effectively can we combine these techniques?

• RQ4: What is the run-time cost of standalone and combined
techniques?

Experimental Subjects

• Defects4j dataset

• 5 real-world and widely-used projects.

• 357 actual faults.

• Average size of projects: 138,000 lines
of code.

RQ1. Effectiveness of Standalone
Techniques

• Top n: How many faults can be
localized within top n positions.

• The effectiveness differs
significantly between families.

• Spectrum-based FL is the most
effective family.

RQ1. Effectiveness of Standalone
Techniques

• Stack trace analysis is the most
effective one on crash faults.

RQ2. Correlation between Techniques

• 55 pairs of techniques in total.
• Only 2 pairs are significantly

correlated.
- Ochiai(SBFL) / Dstar(SBFL)
- Union(Slicing) / Frequency(Slicing)

• Most techniques are weakly
correlated, including all techniques in
different families.

• Possibility to utilize the potential
complementary information.

RQ3. Effectiveness of Combining
Techniques

• How to combine? Learning to Rank.
• First introduced to FL by Xuan & Monperrus[1].
• Standalone techniques are treated as a black box.
• Output: One re-ranked suspicious list.

• Example:

[1] Xuan, Jifeng, and Martin Monperrus. "Learning to combine multiple ranking metrics for fault localization." 2014 IEEE International Conference on Software Maintenance and Evolution. IEEE, 2014.

foo.java line 12: {Ochiai: 0.6, slicing: 0, MUSE: 0.3, …}
foo.java line 10: {Ochiai: 0.5, slicing: 1, MUSE: 0.3, …}
bar.java line 5: {Ochiai: 0.4, slicing: 1, MUSE: 0.4, …}

RQ3. Effectiveness of Combining
Techniques

CombineFL Results. Comparing to Best Standalone Techniques.

Top 1 Top 3 Top 5 Top 10

205

168

137

72

156

111
84

24

Best Standalone CombineFL

• The combined technique significantly outperforms any
standalone technique.

RQ3. Effectiveness of Combining
Techniques

• Contribution: decrease when
remove from the combination.

• The contribution of each
technique to the combined
results is not determined by its
effectiveness as a standalone
technique.

C
on

tri
bu

tio
n

0

3

6

9

12
IR-based
Predicate Switching

St
an

da
lo

ne

0

10

20

30

Top 1 Top 3 Top 5 Top 10

23
20

15

3 3
000

IR-based
Predicate Switching

RQ4. Time Consumption and Combination
Strategy

• FL families can be
categorized into levels.

• The run-time differs in
orders of magnitude
between levels.

(in seconds)

RQ4. Time Consumption and Combination
Strategy

• How to select FL techniques for combination:
• Select an acceptable time level.
• Include all preceding level families.

Implications

• Call for more information sources.
• Evaluating a FL technique:
• It is important to know its contribution to the existing

combinations.
• Both effectiveness and efficiency are important.

• Our infrastructure available at:
https://combinefl.github.io/

• Standard JSON format.
• Automated integrating your FL technique with all aforementioned

techniques.

https://combinefl.github.io/
https://combinefl.github.io/

